内齿圈淬火设备_辽宁内齿圈淬火设备哪家好_推荐信息放心选择

2021-07-04 11:02:33

1、淬硬层分布不匀,一侧硬度高、硬层深,另一侧硬度低、硬层浅。这是因为沿齿沟感应淬火与圆环感应器回转感应淬火相比,位置敏感度很高,需要设计制造定位装置,以保证齿侧与感应器的间隙高度对称分布。若不对称,

1、淬硬层分布不匀,一侧硬度高、硬层深,另一侧硬度低、硬层浅。这是因为沿齿沟感应淬火与圆环感应器回转感应淬火相比内齿圈淬火设备,位置敏感度很高齿轮淬火设备,需要设计制造定位装置,以保证齿侧与感应器的间隙高度对称分布。若不对称,还可能造成间隙小的一侧发生感应器与零件短路打弧,使感应器早期损坏。

2、已淬硬齿侧退火。原因是辅助冷却装置调整不到位或冷却液量不足。

3、感应器鼻尖部分铜管过热。在采用非埋入式沿齿沟扫描淬火工艺时,因感应器与零件间的间隙相对较小,受加热面的热辐射轴淬火设备,以及鼻部铜管有限尺寸的约束,铜管极易过热烧坏,使感应器损坏。因此花键轴淬火设备,感应器要保证有足够流量和压力的冷却介质通过。

4、感应处理过程中齿圈的形状、位置变化。沿齿沟扫描淬火时,处理齿会胀出0.1~0.3mm。形变、热膨胀、感应器调整不当会造成零件与感应器相碰而损坏。因此花键轴淬火设备,在决定感应器与齿侧间隙时要考虑热膨胀因素,并采用适当的限位装置来保证间隙。

5、感应器导磁体性能退化。导磁体工作条件恶劣,处于高密磁场、高电流环境下,极易过热损坏,同时淬火介质、锈蚀都会使其性能退化。因此花键轴淬火设备,要做好感应器的日常维护和保养。

感应淬火技术在风电增速齿轮箱内齿圈上的应用

在齿轮的强化方法中,感应淬火与调质、渗碳、渗氮一起构成四大基础工艺。考虑到生产实际,在风电增速箱内齿圈的批量生产中采用渗氮或感应淬火工艺可以获得比较高的生产效率及较低的生产成本。具体采用何种工艺主要由客户要求、自身工艺控制水平及生产效率成本等因素而定。根据ISO6336标准,对于模数大于16的齿轮件就不再推荐使用氮化工艺提高表面硬度,故对模数大于16的内齿圈推荐采用感应淬火工艺进行加工。

1.感应淬火工艺

风电增速箱内齿圈一般采用逐/隔齿沿齿沟扫描技术进行感应淬火。采用设计制造合理的感应器,配合的工艺参数控制,可以生产质量优良、稳定的感应淬火齿圈。

2.感应淬火的优缺点

将感应淬火技术应用于风电增速箱内齿圈上,不仅具有生产、节约能源、环境污染小以及易于实现自动化等感应淬火共有优点,还具有以下特点:

(1)相比于氮化,其对基体硬度和组织要求可以适当放宽。

(2)相比于渗碳淬火,工件不是整体加热,变形较小,故相应磨量较小,设计放模量可减少,且后续生产加工成本较低。

(3)批量生产时交货期短,满足一些客户需求。

(4)便于机械化和自动化,设备紧凑,使用方便,劳动条件好。

但使用感应淬火技术对内齿圈进行加工,尚有以下困难及缺点待克服:新齿形产品工艺试验周期较长,感应器设计/相关工艺参数选择需要慎之又慎;不能实现全齿宽淬硬。目前可满足设计上80%齿宽高符合工艺要求,这一点也是未来需要改进和克服的地方;批量生产时,发生批量事故风险较大,需要严格的质量控制体系和较高的质量控制水平来进行控制。

凸轮轴感应淬火

感应加热淬火具有加热速度快,生产,工件氧化脱碳少、淬火畸变小,劳动条件好,无污染和易于实现机械化、自动化等一系列优点。

对于凸轮轴感应淬火,传统渗碳炉装载量少,且淬火质量不高。淬火机床采用凸轮轴双工位感应淬火机床,该设备感应加热电源采用IGBT (与SCR可控硅相比,可靠性与节能效果更好,频率适配范围宽)。淬火机床可以严格控制冷却液喷射时间,使工件既能获得足够的表面硬度,又不会因冷却过于剧烈而开裂。凸轮轴淬火位置的调试首先根据凸轮轴的结构和尺寸,在程序中确定各档相对位置。通过肉眼观察感应器的位置及加热效果完成粗调,粗调并试淬后,进行金相分析测定淬硬层的分布状况,再进行位置微调。在确定加热功率和淬火液浓度后,为了保证淬硬层深度达到技术要求,还需要确定合适的加热时问,以保证在满足技术要求的前提下,提高生产效率。

感应加热表面淬火在齿轮传动件上的应用

机械制造技术的进步向从事感应淬火工艺和设备工作的技术人员提出了愈来愈多的难题。为解决这些难题,必须研制新的技术装备和采用新的工艺方法。

齿轮传动件工作时承受各种类型的载荷,为提高零件在各种服役条件下的强度和寿命, 对热处理提出了许多具体的要求。比如:只要在浅淬硬层的表面获得高硬度就可以提高表面耐磨性。对于重载齿轮, 应增大轮齿高接触载荷区即接近节圆直径的淬硬层。沿齿廓即齿部和齿根淬火会提高在交变载荷下工作的齿轮的弯曲疲劳强度。淬硬层在齿根处断开或齿根部淬硬层太浅,易产生应力集中,是很危险的。需解决的主要问题是选择工作频率和淬火方法,淬火方法对淬火感应器的研制提出了很高的要求。特殊设计感应器能够仿齿沟形状的淬硬层,这与工件中感应涡流的路径有关。

在齿轮感应淬火领域,可为客户提供:齿轮单齿淬火、齿轮整体淬火、大型齿轮淬火解决方案。整套淬火设备包括:晶体管感应加热电源、淬火机床、设备冷却系统及控制系统,可实现齿轮淬火过程全部自动化。

齿轮旋转感应淬火技术

齿轮旋转感应淬火可分为两种主要方法:通过硬化和轮廓硬化。种方法 - 主要用于齿轮高磨损 - 齿周边采用低硬化比功率。但是,如果频率太低,则存在温度感应涡流流动,并且温度在齿中滞后。淬火是通过浸没或喷雾,以实现齿和根圆之间均匀的温度。全硬化后的回火用于工件防裂。

轮廓硬化分为单频和双频过程,也实现了奥氏体化在单一加热中,或通过将齿轮预加热至550-750℃  加热之前硬化温度。预热的目的是充分达到在终加热期间在根圆中的高奥氏体化温度,没有过热的齿。短加热时间和高比功率通常需要实现在不规则距离处的硬化轮廓齿面。

双频过程使用单独或同时的频率。使用单独的频率实现类似于情况的硬化曲线硬化。该过程一个接一个地应用两个不同的频率齿轮。齿以低频率被预热至550-750℃的频率应该使得在根圆区域中发生预热。短延迟,使用较高频率和比功率实现奥氏体化。准确的监测系统是必不可少的,因为加热时间是测量的在这个终加热阶段中的十分之几秒或秒。

联系方式
ico04
联系人

李经理

ico01
电话

13044712812

ico06
手机

13044712812

ico05
QQ

1612517284

ico03
邮箱

13014650631@163.com

ico02
地址

河南省郑州市高新区玉兰街16号