北京汽车半轴淬火设备联系方式工厂 (多图)
2021-07-18 09:18:00
解决花键轴同一键槽各部位淬火加热温度不均匀性问题:
(1)减少感应器高度齿轮淬火设备在保证感应器本身强度及内部冷却系统冷却能力的前提下汽车半轴淬火设备,减少感应器高度齿轮淬火设备,使感应器可以进入花键三分之一后就开始加热,使感应器预热部位的作用得以充分发挥。
(2)增加预热工艺增加预热工艺,感应器在花键轴键槽下部起始位置加热一、二秒后开始运动,增加花键轴键槽下部加热效果。这样达到花键轴同一键槽各部位淬火加热温度的均匀。
感应在中国是感应热处理,致力于感应淬火技术的研发已有十多年的历程,目前拥有多项核心,其淬火机床已应用于众多工业领域传动部件及动力输出部件的感应淬火。

汽车半轴局部感应加热感应器的类型
等直径变匝距感应器 当变截面圆柱体毛坯加热时,例如带台阶的变径毛坯,在同一加热时间内,必须保证在各个区段上析出不同的能量,能量也就是单位长度上的功率与直径区段相对应。这一点靠各区段上磁场强度的相应分布便可做到,为此感应器应做成变匝距的。直径的区段上的匝距而磁场强度。为此要确定各个区段上的单位功率, 平均单位功率和平均单位匝数,感应器的分段长度花键轴淬火设备。
以上这种变截面圆柱体毛坯加热,感应器设计为变匝距,优点是感应器可做成等直径,不必仿型。
缺点是感应器设计制作较复杂,对于相对较细的直径来说感应加热的效率偏低。而且设备调试也较复杂。
因此目前在半轴二火补温加热时更多得采用仿型感应器。感应器设计为等匝距。
等匝距仿型感应器 仿型感应器加热的基本原理是根据感应加热的电效率与感应器线圈内径与坯料外径之比有一定的函数关系来考虑的。
1.仿型的矩形感应器形式
矩形感应器又可称为椭圆截面感应器,与这种仿型的矩形感应器配套的机械装置常见的推料方式有3种情况:利用气缸或液压缸移动坯料;链式或板式输送带移动坯料;自动旋转装置移动坯料。
仿型的矩形感应器存在以下问题:由于坯料形状的特殊性,向感应器进料和出料时,坯料在感应器内移动困难等问题。虽然感应器制作工艺较简单,但机械动作较复杂,这种方式较少采用。
2.仿型的U型感应器形式
仿型的U型感应器是坯料端部感应加热又一种常用的加热方法。仿型的U型感应器常见的坯料移动方式,也有3种形式:利用气缸推动坯料;利用链(板)式移动坯料;自动旋转装置移动坯料。
这种仿形的U型感应器的机械动作虽然比较矩形感应器简单一些,但感应器的制作太复杂,人们也较少采用,另外,U型感应器的效率也相对。

齿轮双频感应加热过程及齿轮材质的选择
双频加热的原理是使用低高两种频率的热源。首先,以较低频率的热源加热(3—10kHz),为齿轮预热提供所需能量。
随后,立即进行高频热源加热,频率范围100-250kHz之间。频率选择依齿轮尺寸及周节大小而定。高频热源将迅速使全部齿轮外表面加热至淬火温度,然后齿轮立即淬火,获得设计所规定的硬度。
在双频加热中,固定在心轴上旋转着的齿轮接受预热,随后一个快速“脉冲使之达到终适宜的淬火温度后,工件被送入水中淬火。全部过程共需30秒钟。
这一过程为计算机所控制。由于加热速度快,表面无氧化、脱碳现象,外观质量及心部材料的性能仍保持不变。
制造齿轮有多种材料,从工艺及经济的观点出发,钢得到广泛应用。
含碳量决定钢能达到的硬度。通常用于感应热处理的钢,视其表面的设计硬度要求,含碳量一般为0.40,0.50或0.60%为宜。
要使零件在局部加热之后淬火硬化,钢的含碳量必须达到设计硬度的要求。
双频感应淬火解决这一问题的办法是,严格控制热处理变形,使变形量限制在太多数齿轮的设计要求范围之内。
齿轮淬火处理有其特点,双频感应处理是各种方法中较理想的。在常规处理中,要同时满足一定的硬化层深度及变形要求是困难的,因为两者会相互影响,相互制约。而双频感应方法仅对齿轮的局部提供淬火所必须的能量(比常规生产减少2—3倍),因此,变形范围及硬化深度均达到设计要求。

齿轮感应淬火的作用与目的
近年来 ,随着齿轮生产商对技术认识的不断提高,带来了多方面的改进,如低噪音、轻量化、低成本和高承载能力等,使得齿轮副在高速和大扭矩作用下产生少的热量。并不是所有的齿轮都适应感应淬火 ,外螺旋直齿轮、蜗杆齿轮、内齿轮、齿条和链齿属于典型的感应淬火齿轮零件。相反,锥齿轮、双曲面齿轮和非圆形齿轮几乎不使用感应热处理。
与渗碳和渗氮相比,感应淬火不要求齿轮整体加热。通过感应淬火,可将热量地施加于特定的区域,使该区域产生所期望的相变 (例如齿廓、齿根和齿顶有选择的硬化) ,且对其余区域的影响很小。根据应用情况,齿部硬度范围一般是 42~60 HRC。
齿轮感应淬火的一个目的是在齿轮的特殊部位得到细晶的全马氏体层 ,以提高硬度和耐磨性。 但不会使其余部分受热处理的影响。 硬度的增强也提高了接触疲劳强度 ,由于同时增强了硬度、耐磨性并可获得细晶粒的马氏体层 ,所以可以使用廉价的中高碳钢或低合金钢去替代较贵的高合金钢。
并非总是能够得到全马氏体层 ,根据钢的品种不同 ,硬化层不可避免存在残余奥氏体 (除非使用低温处理) 。 对于含碳量高的钢和铸铁 ,尤其如此。
齿轮感应淬火的另外一个目的是增加齿轮表面压应力。这是很重要的,因为它有助于抑制裂纹的产生,也阻止了拉应力引起的弯曲疲劳性能的下降。这种钢铁的使用 ,使它原先的显微组织和齿轮工况 (包括载荷情况和操作环境) 决定了所需要的表面硬度、芯部硬度、硬度断面、齿轮强度和残余应力分布。

齿轮双频淬火
1. 齿轮双频淬火机理
齿轮双频淬火的机理是先用较低频率进行齿轮预热,然后在进行高频加热。
2. 双频齿轮淬火法
齿轮双频淬火可由两种方法实现,即同时加热法:一次加热齿轮全部加热表面;扫描加热法:齿轮依次通过中频预热及高频加热感应器。扫描淬火法所需电源功率比同时加热法要小。
双频齿轮感应淬火工艺适用于大批量齿轮生产,能取代渗碳齿轮方式。

汽车轮毂轴分段感应淬火与整体感应淬火的工艺的区别
分段感应淬火和整体感应淬火在汽车轮毂轴上应用的进行对比。
1.分段感应淬火工艺
目前生产厂家大部分都设计采用复杂台阶的轮毂轴管结构,由于轮毂轴管特殊结构,目前感应淬火强化多采用分段多次进行。淬火强化区域包括两段外圆柱面及三个过度圆角,淬火区域比较复杂。分段感应淬火技术有以下缺点:
(1)轮毂轴管有两段不连续的淬火区,分两道工序淬火,所需感应器品种多;
(2)淬火变形超差造成废品率较高,且分段淬火生产节拍慢、成本高、工人劳动强度大;
(3)分段感应淬火形成的中间淬火软带降低了轮毂轴管的强度,由于淬火硬化区和软带硬度相差大,进入磨削工序软带部位粗糙度偏低,影响磨削质量;
(4)分段感应淬火技术中圆角靠圆角的热传导带起来,台阶尖角部位存在明显的过热问题;
(5)分段感应淬火使零件储热少,自回火开裂风险增大。对于以上分段感应淬火技术所带来的缺点,其中淬火变形问题可以采取加大磨削余量的办法解决,但会增加部分磨削加工的成本;其他缺点在使用分段淬火技术时是无法解决办法的,如需这些问题,需进一步优化感应热处理工艺。