花键轴淬火设备生产商(查看)_齿轮淬火设备
2022-01-20 09:16:58
中频轴淬火设备都应用在哪些领域,具有什么特点?
大直径的中频轴淬火设备,配置采用的IGBT变压器、感应器是精心制作的,大直径中频轴淬火设备400mm以内直径的轴淬火花键轴淬火设备,其淬火层深为2-6mm齿轮淬火设备,淬火深度可以自行调节,满足各种要求淬火层比较深的工件淬火(链轮、导轨面、轴、盘、花键轴、凸轮、凸缘等)。
中频轴淬火设备的主要应用范围:
1、各种五金工具、手工工具的热处理,如钳子、扳手、旋具、锤子、斧头等。
2、各种汽车配件、摩托车配件的高频淬火处理,如:曲轴、连杆、活塞销、曲柄销、链轮、凸轮轴、气门、各种摇臂、摇臂轴;变速箱内各种齿轮、花键轴、传支半轴、各种小轴、各种拨叉等高频淬火的处理。
3、各种电动工具上的齿轮、轴等的高频淬火处理。
4、塞、转子泵的转子;各种阀门上的换向轴、齿轮泵的齿轮等的淬火处理。
5、金属零件的热处理,如各种齿轮、链轮、各种轴、花键轴、销等的高频淬火处理。
中频轴淬火设备的特点:设备体积小,方便移动,安装和操作起来非常方便,设备安全性能高;省电节能环保,使用新型的IGBT加热电源,无噪音;设备应用范围较广泛,适合各种机械零件的表面淬火;用于轴表面淬火,淬火速度快,淬火加热均匀。

花键轴感应淬火的研究
目前花键轴淬火设备,花键轴中频感应淬火工艺已逐步代替原渗氮工艺。
(1)淬火感应器与花键轴键槽同一截面各部位不等间距齿顶部位加热速度快,增大间距,减弱磁感应强度;齿面部位加热速度较快,增大间距,适当减弱磁感应强度;齿根部位加热速度慢,增大间距,增强磁感应强度。
(2)加装导磁体减少感应器鼻部宽度,利用镶装磁阻小的导磁体材料(硅钢片)。感应加热磁场邻近效应及导磁体的驱流效应,使感应磁场进一步被挤向感应器鼻部边缘,相当于再缩小感应器与齿根间距,提高齿根加热速度,达到接近齿面加热速度,这样达到减少花键轴同一横截面淬火加热温度不均匀性的目的。

花键轴零件感应淬火
花键轴类汽车零件在使用中承受扭转应力和滑动摩擦,所以需要具有较高的表面硬度和抗扭转强度。感应淬火是提高其使用性能的方法之一。在汽车或机械制造领域中,花键轴类零件往往是承受交变的扭转、交变的弯曲和滑动摩擦等载荷。商用车常见花键轴类零件主要包括驱动半轴、贯通轴、传动轴、花键轴、花键轴叉、轴间差速器壳、行星轮架轴、制动凸轮轴等。在生产实践中为提高这些零件的使用性能,除个别零件采用调质工艺外,绝大部分零件采用感应热处理强化工艺,其抗弯曲强度和抗扭转疲劳强度等性能得到极大提高。
整体一次加热淬火方法感应器结构为矩形铜管加导磁体的纵向分布形式,即由铜管绕制成矩形回线结构, 加热时,工件上的感生涡流纵向环流,在工件旋转同时整个圆周面迅速被加热。感应器铜导线上装置的导磁体起到控制磁力线分布的作用。感应器的附近装置喷液冷却器,在加热工件达到设定温度(或时间)时自动喷液冷却。目前,国内汽车厂家多采用整体一次加热淬火方法来处理半轴这类零件,零件的质量和生产效率均达到比较好的状态。
移动(扫描、连续)加热淬火方法感应器一般为圆环形回线结构,环形导线内部通有足够压力和流量的循环冷却水。感应加热时,工件上有周向感生电流流动,工件一边加热一边与感应器相对移动,感应器上装有喷液器,以实现一边移动(扫描、连续)加热一边喷射冷却液冷却,终实现淬火强化的目的。

汽车半轴局部感应加热感应器的类型
等直径变匝距感应器 当变截面圆柱体毛坯加热时,例如带台阶的变径毛坯,在同一加热时间内,必须保证在各个区段上析出不同的能量,能量也就是单位长度上的功率与直径区段相对应。这一点靠各区段上磁场强度的相应分布便可做到,为此感应器应做成变匝距的。直径的区段上的匝距而磁场强度。为此要确定各个区段上的单位功率, 平均单位功率和平均单位匝数,感应器的分段长度。
以上这种变截面圆柱体毛坯加热,感应器设计为变匝距,优点是感应器可做成等直径,不必仿型。
缺点是感应器设计制作较复杂,对于相对较细的直径来说感应加热的效率偏低。而且设备调试也较复杂。
因此目前在半轴二火补温加热时更多得采用仿型感应器。感应器设计为等匝距。
等匝距仿型感应器 仿型感应器加热的基本原理是根据感应加热的电效率与感应器线圈内径与坯料外径之比有一定的函数关系来考虑的。
1.仿型的矩形感应器形式
矩形感应器又可称为椭圆截面感应器,与这种仿型的矩形感应器配套的机械装置常见的推料方式有3种情况:利用气缸或液压缸移动坯料;链式或板式输送带移动坯料;自动旋转装置移动坯料。
仿型的矩形感应器存在以下问题:由于坯料形状的特殊性,向感应器进料和出料时,坯料在感应器内移动困难等问题。虽然感应器制作工艺较简单,但机械动作较复杂,这种方式较少采用。
2.仿型的U型感应器形式
仿型的U型感应器是坯料端部感应加热又一种常用的加热方法。仿型的U型感应器常见的坯料移动方式,也有3种形式:利用气缸推动坯料;利用链(板)式移动坯料;自动旋转装置移动坯料。
这种仿形的U型感应器的机械动作虽然比较矩形感应器简单一些,但感应器的制作太复杂,人们也较少采用,另外,U型感应器的效率也相对。

从动齿圈中频感应加热预淬火
从动齿圈是联合收割机差速器总成中的关键零件。技术要求感应淬火后齿顶和齿根部硬度为50~60HRC。
从动齿圈采用整体预热后高频加热淬火方式,可使齿部与心部的温差减小,降低齿顶和齿根传热条件不同而引起的温度差异,获得沿齿廓分布的淬硬层。另外,考虑到操作方便,直接采用中频进行齿部预热后二次加热淬火。零件淬火后留自回火温度200~250 ℃,同时规定淬火和回火时间间隔不得超过2小时,有效防止淬火裂纹的产生。
1. 从动齿圈采用齿部预热后中频加热淬火方式,可以显著降低由于齿顶和齿根传热条件不同而导致的温度差异,从而获得沿齿廓分布的淬硬层。
2. 在对齿宽较宽的盘状类齿轮整体加热的感应器设计时,感应器的高度应比齿圈的齿宽小1~2 mm,以减小加热时的尖角效应。
3. 随着数控淬火机床的发展,如果采用数控机床,可以实现两次加热采用不同的工艺参数,则能够取得更好的效果。

采用同时双频法,频率较低和较高同时馈入感应器。硬化通过加热来实现。正确淬火对于的旋转硬化结果至关重要,应该在加热后尽快进行。时间间隙加热和淬火可以通过使用快速CNC轴定位来化喷头,或通过将猝熄电路集成到感应器中。在此期间淬火阶段齿轮的转速降低到50rpm以下避免在与旋转方向相反的侧面上的“阴影效应”。
许多其他因素影响自旋硬化结果。材料要硬化和其初始结构,例如,具有决定性的影响。由于短奥氏体化时间,初始钢结构必须是密实的(ASTM7及以上)。非均匀的珠光体 - 铁素体初始结构是不合适的。初始结构和碳含量的重要性随模块尺寸而增加减少。如果稍微增加的淬火畸变是可接受的,则是感应的预淬火和回火在轮廓淬火之前可以大大提高齿轮的淬透性。
模块尺寸是旋转硬化的另一个关键因素。自旋硬化是一种通用且可靠的工艺,可以硬化齿轮,螺旋齿轮和内齿轮与表面不规则的距离。利用独特的感应器解决方案可用来限制这种效果通过增强功率分布。