齿轮表面淬火设备联系方式_齿轮表面淬火设备联系方式厂 (在线咨询)
2022-01-27 09:15:38
齿轮淬火
齿轮淬火的目的是使过冷奥氏体进行马氏体或贝氏体转变齿轮表面淬火设备,得到马氏体或贝氏体组织齿轮淬火设备,然后配合以不同温度的回火,以大幅提高钢的强度、硬度、耐磨性、疲劳强度以及韧性等,从而满足各种机械零件和工具的不同使用要求。
齿轮淬火的必要性
有些零件(包括齿轮在内)在工件时在受扭转和弯曲等交变负荷、冲击负荷的作用下,它的表面层承受着比心部更高的应力。在受摩擦的场合,表面层还不断地被磨损,因此对一些零件表面层提出高强度、高硬度、高耐磨性和高疲劳极限等要求,只有表面强化才能满足上述要求。由于表面淬火具有变形小、生产率高等优点,因此在生产中应用极为广泛轴淬火设备。
齿轮淬火目的
齿轮淬火原理:将工件放入感应器(线圈)内,当感应器中通入一定频率的交变电流时,周围即产生交变磁场。交变磁场的电磁感应作用使工件内产生封闭的感应电流──涡流。电流在工件截面上的分布很不均匀,工件表层电流密度很高,向内逐渐减小,这种现象称为集肤效应。工件表层高密度电流的电能转变为热能,使表层的温度升高,即实现表面加热花键轴淬火设备。电流频率越高,工件表层与内部的电流密度差则越大,加热层越薄。在加热层温度超过钢的临界点温度后迅速冷却,即可实现表面淬火。

凸轮轴采用淬火设备进行淬火热处理,其感应器是怎么样的呢?
凸轮感应器有圆环形与仿形两种。发动机凸轮感应器大都采用圆环形有效圈。为防止相邻凸轮或轴颈受到磁场影响而回火,因此,需要在有效圈上跨上导磁体束,既提高感应器的效率,又防止磁力线散射。早期的凸轮感应器在有效圈两端装上导磁体板与短路环,同样具有屏蔽效果,但损耗较大,现在已经被淘汰。
凸轮感应器有时采用双孔串联,主要是为了利用变频电源的功率,一般凸轮轴的轴颈数量少(如3个),而加热表面积大,凸轮则数量多(如8个)而加热面积小。因此,当采用双工位凸轮轴淬火机时,双孔凸轮感应器与单孔轴颈感应器交替工作,能得到恰当的匹配。
凸轮轴轴颈感应器一般为一次加热带喷液结构,特殊尺寸的轴颈也有采用扫描淬火的。制动凸轮感应器,由于工件要求的淬硬部位为两个圆弧面,现代制动凸轮感应器大都设计成仿形结构。为避免凸轮尖部温度过高,有些感应器设计时,针对桃尖部装有针形阀结构,凸轮加热时,针阀小孔喷出微小的淬火冷却介质,进行温度调整。
凸轮轴采用淬火设备进行淬火热处理,其热处理工艺主要是通过感应器实施的。因此,了解凸轮轴的淬火感应器具有非常重要的现实意义。

低淬钢齿轮感应加热淬火
利用钢材的低淬透性 ,将感应加热透的齿轮用激烈的冷却水进行淬火 ,得到沿齿轮廓的淬硬层及略提高硬度的齿心部。低淬透性钢齿轮感应淬火样品这种工艺有如下优点 :( 1 )对感应加热电源要求不高 (常用 8kHz、1 0 0kW) ,即不需要特殊的频率及高的功率密度 ,设备投资费用少。( 2 )低淬透性钢成本低 ,其价格与中碳结构钢相似。( 3)轮齿表面有很高的残余压应力 ,齿心部由于热透 ,硬度略有提高 ,因此轮齿的抗弯性强度得到提高 ,综合力学性能好。
齿轮双频淬火
齿轮双频淬火机理齿轮双频淬火的机理是先用较低频率进行齿轮预热 。早期的齿轮双频淬火是在两个感应器中进行的 ,即先在中频感应器进行预热 ,然后在高频感应器中进行终加热。现代化的双频齿轮感应淬火现代化的双频齿轮加热已经改进在一个感应器内进行。

凸轮轴感应淬火
感应加热淬火具有加热速度快,生产,工件氧化脱碳少、淬火畸变小,劳动条件好,无污染和易于实现机械化、自动化等一系列优点。
对于凸轮轴感应淬火,传统渗碳炉装载量少,且淬火质量不高。淬火机床采用凸轮轴双工位感应淬火机床,该设备感应加热电源采用IGBT (与SCR可控硅相比,可靠性与节能效果更好,频率适配范围宽)。淬火机床可以严格控制冷却液喷射时间,使工件既能获得足够的表面硬度,又不会因冷却过于剧烈而开裂。凸轮轴淬火位置的调试首先根据凸轮轴的结构和尺寸,在程序中确定各档相对位置。通过肉眼观察感应器的位置及加热效果完成粗调,粗调并试淬后,进行金相分析测定淬硬层的分布状况,再进行位置微调。在确定加热功率和淬火液浓度后,为了保证淬硬层深度达到技术要求,还需要确定合适的加热时问,以保证在满足技术要求的前提下,提高生产效率。

采用同时双频法,频率较低和较高同时馈入感应器。硬化通过加热来实现。正确淬火对于的旋转硬化结果至关重要,应该在加热后尽快进行。时间间隙加热和淬火可以通过使用快速CNC轴定位来化喷头,或通过将猝熄电路集成到感应器中。在此期间淬火阶段齿轮的转速降低到50rpm以下避免在与旋转方向相反的侧面上的“阴影效应”。
许多其他因素影响自旋硬化结果。材料要硬化和其初始结构,例如,具有决定性的影响。由于短奥氏体化时间,初始钢结构必须是密实的(ASTM7及以上)。非均匀的珠光体 - 铁素体初始结构是不合适的。初始结构和碳含量的重要性随模块尺寸而增加减少。如果稍微增加的淬火畸变是可接受的,则是感应的预淬火和回火在轮廓淬火之前可以大大提高齿轮的淬透性。
模块尺寸是旋转硬化的另一个关键因素。自旋硬化是一种通用且可靠的工艺,可以硬化齿轮,螺旋齿轮和内齿轮与表面不规则的距离。利用独特的感应器解决方案可用来限制这种效果通过增强功率分布。