陕西行车轮淬火设备_轴淬火设备厂家 ( 本地商家)
2022-10-04 09:14:05
齿圈高频淬火过程中常见问题与对策
感应加热淬火工艺简单、、节能等特点受到了大家的欢迎,尤其现在对环保抓的比较严的当下,在大环境下可以说感应淬火是一种趋势,齿圈高频淬火设备就是应用的感应淬火原理。齿圈(包括外齿圈和内齿圈)作为常用的机械传动零件,特别是大直径齿圈通过感应加热淬火工艺进行表面强化,达到实际应用中所需要的硬度行车轮淬火设备。
齿圈感应加热淬火有四种齿轮淬火设备,沿齿沟感应淬火、逐齿感应淬火、回转感应淬火、双频感应淬火。
1、沿齿沟感应淬火:使齿面和齿根得到硬化,齿顶中部无淬硬层。此法热处理变形小,但生产效率低。
2、逐齿感应淬火:齿面硬化,齿根无硬化层,提高齿面的耐磨性,但因热影响区的存在,会降低齿的强度。
3、回转感应淬火:单圈扫描淬火或多匝同时加热淬火轴淬火设备,齿部基本淬透,齿根硬化层浅。适于中小齿轮,不适于高速、重载齿轮。
4、双频感应淬火:中频预热齿槽,高频加热齿顶,得到基本沿齿廓分布的硬化层。
齿圈高频淬火过程中常见问题与对策(这里主要以沿齿沟感应淬火方法为例)

齿轮感应淬火设备是怎样进行淬火工艺的?
齿轮感应淬火设备花键轴淬火设备,是指对齿轮机械等零件表面进行淬火用的感应电热设备,主要对齿轮等工件热处理加工,感应淬火设备,主要是由电源、淬火机床和淬火控制设备等组成的,具有加热速度快、热、工件变形少、节能省电、环保无污染等诸多的优势。
在使用中、高频设备对齿轮进行感应淬火时,对于模数m<4mm的齿轮常进行全齿穿透淬火;对于m>5mm的齿轮,因齿形高宽,可以进行沿齿淬火,也可沿齿沟淬火,即可采用喷液(主要是水)冷却,也可采用浸液冷却;实施全齿淬火时齿轮应旋转,单齿淬火时齿轮不旋转,每淬完一齿后转动下一齿,直至全部淬完为止。
目前齿轮感应淬火设备,主要是用于各种圆钢类、板材类的透热锻打;各种轴类、齿轮类、汽配类、机械零部件类的、砼泵管类的热处理;各种工具、刀刃类的焊接等方面,不论我们选用哪种加热方法,工件均需在感应器内旋转,以达到均匀加热的目的,工件需作旋转运动,这样可使工件表面淬层硬度和淬层深度均匀。

齿轮感应淬火的应用前景
感应淬火是热处理行业所追求的清洁生产工艺,感应淬火所具有的一系列优点是其他热处理工艺难以比拟和取代的。感应加热淬火是热处理重要工艺之一,尤其以它具有生产、节约能源、环境污染小,以及易于实现自动化等优点而倍受欢迎。在齿轮的强化方法中,与调质、渗碳和渗氮一起构成四大基础工艺,在齿轮从软齿面向硬齿面技术发展的过程中,感应淬火工艺曾发挥了重要作用。
国外感应加热淬火的应用还是比较广泛的。在日本,铁路机车齿轮,包括高速机车齿轮以感应淬火为主。在美国,感应淬火齿轮的典型应用包括:(1)大型挖掘机齿轮。(2)重载起重机驱动齿轮。(3)轧糖机的大扭矩传动齿轮。(4)轧钢机的主驱动齿轮,剪切机齿轮以及卷曲机械齿轮。(5)水泥磨驱动齿轮。
我国的感应加热电源及淬火设备针对齿轮产品的工艺技术需要,开发成套装备和相应的工艺,如前景看好的双频、多频,同时加热大功率电源、脉冲加热电源、CNC齿轮淬火机床及配套的辅助设施和工艺软件等方面,都具有巨大的市场。

齿轮双频感应加热过程及齿轮材质的选择
双频加热的原理是使用低高两种频率的热源。首先,以较低频率的热源加热(3—10kHz),为齿轮预热提供所需能量。
随后,立即进行高频热源加热,频率范围100-250kHz之间。频率选择依齿轮尺寸及周节大小而定。高频热源将迅速使全部齿轮外表面加热至淬火温度,然后齿轮立即淬火,获得设计所规定的硬度。
在双频加热中,固定在心轴上旋转着的齿轮接受预热,随后一个快速“脉冲使之达到终适宜的淬火温度后,工件被送入水中淬火。全部过程共需30秒钟。
这一过程为计算机所控制。由于加热速度快,表面无氧化、脱碳现象,外观质量及心部材料的性能仍保持不变。
制造齿轮有多种材料,从工艺及经济的观点出发,钢得到广泛应用。
含碳量决定钢能达到的硬度。通常用于感应热处理的钢,视其表面的设计硬度要求,含碳量一般为0.40,0.50或0.60%为宜。
要使零件在局部加热之后淬火硬化,钢的含碳量必须达到设计硬度的要求。
双频感应淬火解决这一问题的办法是,严格控制热处理变形,使变形量限制在太多数齿轮的设计要求范围之内。
齿轮淬火处理有其特点,双频感应处理是各种方法中较理想的。在常规处理中,要同时满足一定的硬化层深度及变形要求是困难的,因为两者会相互影响,相互制约。而双频感应方法仅对齿轮的局部提供淬火所必须的能量(比常规生产减少2—3倍),因此,变形范围及硬化深度均达到设计要求。

齿轮联轴器感应加热淬火的工艺研究
鼓形齿轮联轴器在高速、重载机械上得到广泛应用,具有无轴向窜动、传动平衡、冲击振动和噪声小的特点,但加工工艺过程比较复杂,原热处理花键采用渗氮处理。
为了提高生产效率,降低生产成本,在保证产品质量的前提,对齿轮联轴器进行了感应淬火处理的测试。测试采用数控感应淬火机床,淬火感应器与工件之间间隙均匀,采用扫描淬火的方式进行.淬火后工件的内花键,外鼓形齿硬度均符合技术要求,对内花键、外鼓形齿进行了裂纹检测,未发现裂纹。对感应淬火后齿轮联轴器内花键、外鼓形齿进行变形检测,变形较小,符合技术要求。有效硬化层深度,均满足技术要求。金相组织检验属于细马氏体,组织级别符合标准要求。相对于渗碳工艺相比,可以缩短生产周期,并且可以提升生产效率,并降低生产成本。

汽车花键轴感应加热淬火与回火
不少花键轴类零件采用感应加热表面淬火,取代传统调质热处理,可以减少能源消耗。但是,现在大多数花键轴感应加热后仍然采用在炉子中进行低温回火的工艺。实际上,花键轴感应加热中有热量传入其心部,利用这一部分热量对表面淬火层进行自身回火,取消炉子低温回火是完全可能的。
淬火喷水冷却过程停止后,零件表面经过一定时间才达到温度。我们一般所指的自身回火温度就是指这个温度。自身回火过程不是在恒定的温度,而是在某一温度范围内,可持续几分钟。多数花键轴要求硬度范围在HRC48至58之间,传统常采用炉中回火的工艺。
花键轴感应加热淬火层的残余应力分布与一般轴类零件不同。由于在花键部位 有拉伸残余应力存在,特别是花键接近根部处达到值,往往造成花键开裂。 为了减少花键部有害的拉伸残余应力,提高自身回火温度是有好处的。考虑到花键部要求耐磨,应该保持相当高的硬度,当回火温度在250至300摄氏度之间时,由于马氏体析出高度弥散的碳化物,马氏体比容减少。因此,我们选定花键轴自身回火温度为250至270摄氏度,花键部位的残余应力接近于零,可 以有效地防止花键开裂。花键轴由炉中回火改为回火,质量稳定,没有出现过花键开裂的质量问题,且减少了设备负荷,节省了电能。
依据汽车行业工件的特点,感应研制了针对汽车轴类、齿轮齿圈类、等速万向节钟型壳类、轮毂轴承类、等速万向节三柱槽壳类零件的感应淬火及回火。点击了解更多汽车行业零件热处理的解决方案。