大齿轮淬火设备多少钱报价(推荐)_河北齿轮淬火设备报价
2023-01-13 09:09:46
齿圈高频淬火过程中常见问题与对策
感应加热淬火工艺简单、、节能等特点受到了大家的欢迎,尤其现在对环保抓的比较严的当下,在大环境下可以说感应淬火是一种趋势,齿圈高频淬火设备就是应用的感应淬火原理。齿圈(包括外齿圈和内齿圈)作为常用的机械传动零件大齿轮淬火设备,特别是大直径齿圈通过感应加热淬火工艺进行表面强化齿轮淬火设备,达到实际应用中所需要的硬度。
齿圈感应加热淬火有四种,沿齿沟感应淬火、逐齿感应淬火、回转感应淬火、双频感应淬火。
1、沿齿沟感应淬火:使齿面和齿根得到硬化,齿顶中部无淬硬层。此法热处理变形小,但生产效率低。
2、逐齿感应淬火:齿面硬化,齿根无硬化层,提高齿面的耐磨性,但因热影响区的存在轴淬火设备,会降低齿的强度。
3、回转感应淬火:单圈扫描淬火或多匝同时加热淬火,齿部基本淬透,齿根硬化层浅。适于中小齿轮,不适于高速、重载齿轮。
4、双频感应淬火:中频预热齿槽,高频加热齿顶,得到基本沿齿廓分布的硬化层花键轴淬火设备。
齿圈高频淬火过程中常见问题与对策(这里主要以沿齿沟感应淬火方法为例)

齿轮感应淬火设备是怎样进行淬火工艺的?
齿轮感应淬火设备,是指对齿轮机械等零件表面进行淬火用的感应电热设备,主要对齿轮等工件热处理加工,感应淬火设备,主要是由电源、淬火机床和淬火控制设备等组成的,具有加热速度快、热、工件变形少、节能省电、环保无污染等诸多的优势。
在使用中、高频设备对齿轮进行感应淬火时,对于模数m<4mm的齿轮常进行全齿穿透淬火;对于m>5mm的齿轮,因齿形高宽,可以进行沿齿淬火,也可沿齿沟淬火,即可采用喷液(主要是水)冷却,也可采用浸液冷却;实施全齿淬火时齿轮应旋转,单齿淬火时齿轮不旋转,每淬完一齿后转动下一齿,直至全部淬完为止。
目前齿轮感应淬火设备,主要是用于各种圆钢类、板材类的透热锻打;各种轴类、齿轮类、汽配类、机械零部件类的、砼泵管类的热处理;各种工具、刀刃类的焊接等方面,不论我们选用哪种加热方法,工件均需在感应器内旋转,以达到均匀加热的目的,工件需作旋转运动,这样可使工件表面淬层硬度和淬层深度均匀。

带偏心轮凸轮轴的感应加热淬火
凸轮轴是广泛应用于汽车、工程机械、拖拉机等发动机的重要零件,它与挺杆组成一对摩擦副,其主要作用是保证气阀定时开启和关闭。由于发动机的高速运转以及气门挺杆的冲击和磨损,在工作中除承受一定的弯曲和扭转载荷外,还要求具有良好的强度和表面耐磨性等。凸轮轴材料的选用主要取决于其在发动机中的工作条件、使用状况等。目前制造凸轮轴的材料、工艺种类较多,可分为钢和铸铁两大类。凸轮轴感应淬火机床必须对偏心轮表面淬硬。淬火机床具有两个工位,淬火变压器、感应器共两套,每个工位各一套。双工位可单独执行淬火程序,可对凸轮轴的各轴承档、凸轮档、偏心轮档单独进行加热、淬火。加热电源系统设备采用晶体管感应加热电源,输出功率范围可调。淬火机床控制部分该控制系统由西门子S840D数控系统构成,是该设备的核心部分,对淬火过程的凸轮轴运动、感应器移动、能量控制、冷却水和淬火介质的冷却、供给等进行控制,并具有自动监测和报警功能,能将故障编码和主要内容显示在主菜单上。可通过主菜单上的按钮进行操作,并对程序中各参数进行修改、保存,实现不同的淬火工艺。

车轴感应淬火技术的发展
车轴是机车车辆中的部件之一,它直接关系到铁道车辆行车安全。从19世纪中到20世纪初,各国对车轴的疲劳断裂进行了大量的研究,如科学家Wholer和Hoger用全尺寸车轴进行车轴疲劳断裂的研究,日本也对实物车轴进行了大量的试验研究。对车轴疲劳强度和疲劳断裂机理已研究很清楚,但铁路车辆车轴疲劳断裂依然存在。例如,在俄罗斯仅1993年在运用的220~250万根车轴中,因疲劳裂纹而报废的就达6800根。法国在高速铁路系统的定期检修中,将轮座磨去0.5mm深,以防止再次裂纹萌生。在日本新干线使用的所有车轴,运行 45万公里后,用磁粉探伤仪进行检查,每年进行磁粉探伤的车轴总数约2万根。随着高速铁路在世界各国的兴起和不断发展,对车轴的安全使用性能提出了更高的要求。强化车轴表面,是提高车轴断裂的重要措施。无论是法国、日本还是德国对高速运行下的车轴都进行了大量的研究和应用,日本、法国均采用低碳钢制造车轴,并进行表面感应淬火处理。日本新干线的使用结果表明,这种车轴经表面感应淬火后,克服了车轴的断裂,确保了行车安全。车轴材料我国的机车、车辆均采用碳素钢车轴,纵观总体情况,应该说碳素钢车轴是成熟的、可靠的。对于高速列车车轴材料是选碳素钢还是合金钢,我国还没有成熟的技术。由于各国的国情不同 ,技术观点不同 ,选用的车轴材料不尽相同,但都属于低碳钢范畴。
感应淬火低碳钢车轴表面采用感应淬火是提高其疲劳寿命为经济而有效的方法。日本对此进行了详细的试验研究 ,并成功地运用在高速铁路上。日本新干线在这方面工作早在 1948年就开始了 ,碳素钢经调质处理后 ,再沿车轴纵向进行表面感应加热淬火 ,在淬硬层内获得非常细的马氏体组织 ,使其表面硬度显著增加。

汽车半轴坯料中频感应加热质量的控制
为便于实现机械化和自动化,提高生产效率,中频感应加热金属在国内一些企业也逐渐得到广泛运用。
感应加热的基本原理是当施感导体(感应器)中通入交变电流以后,在它的周围产生一个交变的磁场,把金属毛坯置于交变的磁场内,在其内部便产生一个交变电势,在电动势作用下金属内部产生交变涡流。由于金属毛坯电阻上的涡流发热和磁性转变点以下的磁滞损失发热,把金属毛坯加热到所需要的温度。由趋负效应可知,电流仅在被加热的金属表面层流过,表面层中的金属主要靠电流流过而加热,内层(中心金属)则靠外层热量向内层传导而加热。一般来说,当毛坯表面加热到锻造温度时,表面和中心温度差不得超过100℃。对于大直径的毛坯,为了缩短内层金属的加热时间、提高加热速度,建议选用较低的电流频率以增大电流透入深度,否则选用的频率太高,电流透入深度将减少,不但延长了热量由外层向内层的传递时间,增加了热量损失,热效率低,甚至会造成表面过热。小直径毛坯感应加热时,由于截面尺寸小,可以采用较高频率,以提高电效率。
中频感应加热设备是目前主流的电磁感应加热技术,有很多优点:升温快,氧化和脱碳少,劳动条件好,便于实现机械化和自动化。

薄壁齿轮的超音频感应加热淬火
薄壁齿轮材料及热处理技术要求
齿轮材料为45钢。热处理技术要求是齿坯正火到179-299HB,精切齿后沿齿沟高频感应加热淬火到硬度48—55HRC。齿根淬硬层深度≥0.5mm。
淬火加热电源设备
淬火机床功率100kW,加热频率100kHz。感应器采用螺旋状,同时感应器设计时增大与齿轮的耦合,提升感应加热的速度。
加热工艺参数
加热采用全齿同时加热方式。通过加热电源输入功率的调节控制齿轮感应加热时获得的比功率,从而控制感应加热速度。加热后采用喷水冷却的方式。