青海花键轴淬火设备经销商_花键轴淬火设备企业_花键轴淬火设备有哪些

2024-02-26 09:09:14

齿圈高频淬火过程中常见问题与对策感应加热淬火工艺简单、、节能等特点受到了大家的欢迎,尤其现在对环保抓的比较严的当下,在大环境下可以说感应淬火是一种趋势,齿圈高频淬火设备就是应用的感应淬火原理。齿圈(包

齿圈高频淬火过程中常见问题与对策

感应加热淬火工艺简单、、节能等特点受到了大家的欢迎,尤其现在对环保抓的比较严的当下,在大环境下可以说感应淬火是一种趋势,齿圈高频淬火设备就是应用的感应淬火原理。齿圈(包括外齿圈和内齿圈)作为常用的机械传动零件,特别是大直径齿圈通过感应加热淬火工艺进行表面强化,达到实际应用中所需要的硬度。

齿圈感应加热淬火有四种,沿齿沟感应淬火、逐齿感应淬火、回转感应淬火、双频感应淬火花键轴淬火设备

1、沿齿沟感应淬火:使齿面和齿根得到硬化齿轮淬火设备,齿顶中部无淬硬层。此法热处理变形小,但生产效率低。

2、逐齿感应淬火:齿面硬化,齿根无硬化层,提高齿面的耐磨性,但因热影响区的存在,会降低齿的强度。

3、回转感应淬火:单圈扫描淬火或多匝同时加热淬火,齿部基本淬透,齿根硬化层浅轴淬火设备。适于中小齿轮,不适于高速、重载齿轮。

4、双频感应淬火:中频预热齿槽,高频加热齿顶,得到基本沿齿廓分布的硬化层。

齿圈高频淬火过程中常见问题与对策(这里主要以沿齿沟感应淬火方法为例)

1、淬硬层分布不匀,一侧硬度高、硬层深花键轴淬火设备,另一侧硬度低、硬层浅。这是因为沿齿沟感应淬火与圆环感应器回转感应淬火相比,位置敏感度很高,需要设计制造定位装置,以保证齿侧与感应器的间隙高度对称分布。若不对称,还可能造成间隙小的一侧发生感应器与零件短路打弧,使感应器早期损坏。

2、已淬硬齿侧退火。原因是辅助冷却装置调整不到位或冷却液量不足。

3、感应器鼻尖部分铜管过热。在采用非埋入式沿齿沟扫描淬火工艺时,因感应器与零件间的间隙相对较小,受加热面的热辐射,以及鼻部铜管有限尺寸的约束,铜管极易过热烧坏,使感应器损坏。因此,感应器要保证有足够流量和压力的冷却介质通过。

4、感应处理过程中齿圈的形状、位置变化。沿齿沟扫描淬火时,处理齿会胀出0.1~0.3mm。形变、热膨胀、感应器调整不当会造成零件与感应器相碰而损坏。因此,在决定感应器与齿侧间隙时要考虑热膨胀因素,并采用适当的限位装置来保证间隙。

5、感应器导磁体性能退化。导磁体工作条件恶劣,处于高密磁场、高电流环境下,极易过热损坏,同时淬火介质、锈蚀都会使其性能退化。因此,要做好感应器的日常维护和保养。

中频轴淬火设备都应用在哪些领域,具有什么特点?

大直径的中频轴淬火设备,配置采用的IGBT变压器、感应器是精心制作的,大直径中频轴淬火设备400mm以内直径的轴淬火,其淬火层深为2-6mm,淬火深度可以自行调节,满足各种要求淬火层比较深的工件淬火(链轮、导轨面、轴、盘、花键轴、凸轮、凸缘等)。

中频轴淬火设备的主要应用范围:

1、各种五金工具、手工工具的热处理,如钳子、扳手、旋具、锤子、斧头等。

2、各种汽车配件、摩托车配件的高频淬火处理,如:曲轴、连杆、活塞销、曲柄销、链轮、凸轮轴、气门、各种摇臂、摇臂轴;变速箱内各种齿轮、花键轴、传支半轴、各种小轴、各种拨叉等高频淬火的处理。

3、各种电动工具上的齿轮、轴等的高频淬火处理。

4、塞、转子泵的转子;各种阀门上的换向轴、齿轮泵的齿轮等的淬火处理。

5、金属零件的热处理,如各种齿轮、链轮、各种轴、花键轴、销等的高频淬火处理。

中频轴淬火设备的特点:设备体积小,方便移动,安装和操作起来非常方便,设备安全性能高;省电节能环保,使用新型的IGBT加热电源,无噪音;设备应用范围较广泛,适合各种机械零件的表面淬火;用于轴表面淬火,淬火速度快,淬火加热均匀。

为什么齿轮感应淬火后的表面硬度会比普通淬火的高?

齿轮经过感应淬火后的表面温度会比普通的淬火处理高,这是感应淬火的特点,这也可以称为超硬现象。其实为什么齿轮淬火后表面的硬度更高呢?目前主要有两种解释。一是由于感应加热的方式,缩短了加热时间,在加热的过程中缺乏奥氏体晶粒产生的条件,因此导致了齿轮表面硬度提高了。第二种解释就是因为由于感应淬火时冷却速度快,在齿轮淬火表面层存在较大的残留压应力,从而提高了齿轮的表面硬度。

为了印证残留应力对金属工件的作用,我们特意将经过高频感应淬火设备淬火的工件切断,然后再将其与切断前的硬度做比较,发现经过切断后的硬度平均降低了2HRC以上,因此可以证明残留压应力去除之后,金属工件的硬度是会降低的。为什么齿轮残留留压应力会导致表面硬度的提高呢?我们还可以从另一方面来解释,这就是由于齿轮在经过感应设备淬火的时候,在低温回火过程中,齿轮硬度下降的比普通淬火的要多。

现在,大家明白了为什么要使用高频感应淬火设备了吗?因为齿轮感应淬火后的表面硬度会比普通淬火的更高,使用感应淬火设备,可获得高硬度高耐磨的金属工件,何乐而不为呢?

花键轴零件感应淬火

花键轴类汽车零件在使用中承受扭转应力和滑动摩擦,所以需要具有较高的表面硬度和抗扭转强度。感应淬火是提高其使用性能的方法之一。在汽车或机械制造领域中,花键轴类零件往往是承受交变的扭转、交变的弯曲和滑动摩擦等载荷。商用车常见花键轴类零件主要包括驱动半轴、贯通轴、传动轴、花键轴、花键轴叉、轴间差速器壳、行星轮架轴、制动凸轮轴等。在生产实践中为提高这些零件的使用性能,除个别零件采用调质工艺外,绝大部分零件采用感应热处理强化工艺,其抗弯曲强度和抗扭转疲劳强度等性能得到极大提高。

整体一次加热淬火方法感应器结构为矩形铜管加导磁体的纵向分布形式,即由铜管绕制成矩形回线结构, 加热时,工件上的感生涡流纵向环流,在工件旋转同时整个圆周面迅速被加热。感应器铜导线上装置的导磁体起到控制磁力线分布的作用。感应器的附近装置喷液冷却器,在加热工件达到设定温度(或时间)时自动喷液冷却。目前,国内汽车厂家多采用整体一次加热淬火方法来处理半轴这类零件,零件的质量和生产效率均达到比较好的状态。

移动(扫描、连续)加热淬火方法感应器一般为圆环形回线结构,环形导线内部通有足够压力和流量的循环冷却水。感应加热时,工件上有周向感生电流流动,工件一边加热一边与感应器相对移动,感应器上装有喷液器,以实现一边移动(扫描、连续)加热一边喷射冷却液冷却,终实现淬火强化的目的。

齿轮双频感应加热过程及齿轮材质的选择

双频加热的原理是使用低高两种频率的热源。首先,以较低频率的热源加热(3—10kHz),为齿轮预热提供所需能量。

随后,立即进行高频热源加热,频率范围100-250kHz之间。频率选择依齿轮尺寸及周节大小而定。高频热源将迅速使全部齿轮外表面加热至淬火温度,然后齿轮立即淬火,获得设计所规定的硬度。

在双频加热中,固定在心轴上旋转着的齿轮接受预热,随后一个快速“脉冲使之达到终适宜的淬火温度后,工件被送入水中淬火。全部过程共需30秒钟。

这一过程为计算机所控制。由于加热速度快,表面无氧化、脱碳现象,外观质量及心部材料的性能仍保持不变。

制造齿轮有多种材料,从工艺及经济的观点出发,钢得到广泛应用。

含碳量决定钢能达到的硬度。通常用于感应热处理的钢,视其表面的设计硬度要求,含碳量一般为0.40,0.50或0.60%为宜。

要使零件在局部加热之后淬火硬化,钢的含碳量必须达到设计硬度的要求。

双频感应淬火解决这一问题的办法是,严格控制热处理变形,使变形量限制在太多数齿轮的设计要求范围之内。

齿轮淬火处理有其特点,双频感应处理是各种方法中较理想的。在常规处理中,要同时满足一定的硬化层深度及变形要求是困难的,因为两者会相互影响,相互制约。而双频感应方法仅对齿轮的局部提供淬火所必须的能量(比常规生产减少2—3倍),因此,变形范围及硬化深度均达到设计要求。

联系方式
ico04
联系人

李经理

ico01
电话

13044712812

ico06
手机

13044712812

ico05
QQ

1612517284

ico03
邮箱

13014650631@163.com

ico02
地址

河南省郑州市高新区玉兰街16号