新闻资讯

轴淬火设备_轴淬火设备联系方式

2024-04-27 09:07:05

花键轴感应淬火的研究目前,花键轴中频感应淬火工艺已逐步代替原渗氮工艺。(1)淬火感应器与花键轴键槽同一截面各部位不等间距齿顶部位加热速度快,增大间距,减弱磁感应强度;齿面部位加热速度较快,增大间距,适

花键轴感应淬火的研究

目前,花键轴中频感应淬火工艺已逐步代替原渗氮工艺。

(1)淬火感应器与花键轴键槽同一截面各部位不等间距齿顶部位加热速度快,增大间距轴淬火设备,减弱磁感应强度;齿面部位加热速度较快,增大间距轴淬火设备,适当减弱磁感应强度;齿根部位加热速度慢,增大间距轴淬火设备,增强磁感应强度齿轮淬火设备

(2)加装导磁体减少感应器鼻部宽度,利用镶装磁阻小的导磁体材料(硅钢片)。感应加热磁场邻近效应及导磁体的驱流效应,使感应磁场进一步被挤向感应器鼻部边缘,相当于再缩小感应器与齿根间距,提高齿根加热速度,达到接近齿面加热速度,这样达到减少花键轴同一横截面淬火加热温度不均匀性的目的。

车轴感应淬火技术的发展

车轴是机车车辆中的部件之一,它直接关系到铁道车辆行车安全。从19世纪中到20世纪初轴淬火设备,各国对车轴的疲劳断裂进行了大量的研究,如科学家Wholer和Hoger用全尺寸车轴进行车轴疲劳断裂的研究,日本也对实物车轴进行了大量的试验研究。对车轴疲劳强度和疲劳断裂机理已研究很清楚,但铁路车辆车轴疲劳断裂依然存在。例如,在俄罗斯仅1993年在运用的220~250万根车轴中,因疲劳裂纹而报废的就达6800根花键轴淬火设备。法国在高速铁路系统的定期检修中,将轮座磨去0.5mm深,以防止再次裂纹萌生。在日本新干线使用的所有车轴,运行 45万公里后,用磁粉探伤仪进行检查,每年进行磁粉探伤的车轴总数约2万根。随着高速铁路在世界各国的兴起和不断发展,对车轴的安全使用性能提出了更高的要求。强化车轴表面,是提高车轴断裂的重要措施。无论是法国、日本还是德国对高速运行下的车轴都进行了大量的研究和应用,日本、法国均采用低碳钢制造车轴,并进行表面感应淬火处理。日本新干线的使用结果表明,这种车轴经表面感应淬火后,克服了车轴的断裂,确保了行车安全。车轴材料我国的机车、车辆均采用碳素钢车轴,纵观总体情况,应该说碳素钢车轴是成熟的、可靠的。对于高速列车车轴材料是选碳素钢还是合金钢,我国还没有成熟的技术。由于各国的国情不同 ,技术观点不同 ,选用的车轴材料不尽相同,但都属于低碳钢范畴。

感应淬火低碳钢车轴表面采用感应淬火是提高其疲劳寿命为经济而有效的方法。日本对此进行了详细的试验研究 ,并成功地运用在高速铁路上。日本新干线在这方面工作早在 1948年就开始了 ,碳素钢经调质处理后 ,再沿车轴纵向进行表面感应加热淬火 ,在淬硬层内获得非常细的马氏体组织 ,使其表面硬度显著增加。

提升齿轮硬度的方式:感应加热及淬火

齿轮旋转淬火(使用环形感应器)

旋转淬火是的感应齿轮硬化方法,并且它特别适用于中等大小的齿轮。在加热期间旋转齿轮以确保能量的均匀分布。可以使用环绕整个齿轮的感应器。当应用感应器时,有五个参数对硬度起主要作用:频率,功率,循环时间,感应器几何形状和淬火条件。通过加热时间,频率和功率的变化获得的感应淬火图案。通常,当仅需要硬化齿尖时,应结合较短的加热时间来施加较高的频率和较高的功率密度。为了硬化齿根,使用较低的频率。

感应淬火是一个两步过程:加热和淬火。两个阶段都很重要。在旋转淬火应用中有三种方法来淬火齿轮

1.将齿轮浸入淬火槽中。这种技术特别适用于大齿轮;

2.使用集成喷雾淬火“就地”淬火。中小型齿轮通常使用这种技术淬火;

3.使用位于感应器下方的单独的同心喷雾灭火块(淬火)。淬火-蒸气层,沸腾和对流热传递的三个阶段的经典冷却曲线不能直接应用于喷射淬火。由于喷射淬火的性质,两个阶段被大大抑制。同时,在对流阶段期间的冷却更严重。齿轮几何形状和转速是在齿轮淬火期间对淬火流动和冷却严重性具有显着影响的其它因素。同样重要的是避免感应器和淬火系统相对于齿轮和齿轮摆动的偏心。即使齿轮旋转,齿轮摆动将导致齿轮的特定部分在加热期间更热,因为不管旋转,它将总是更靠近线圈。除了不均匀加热以外,摆动还引起不均匀淬火,导致额外的硬度不均匀性和齿轮形状变形。已经报道,使用齿轮旋转硬化技术而不是“逐齿”或“间隙”方法在齿根内获得更有利的压缩应力。

齿轮旋转感应淬火技术

齿轮旋转感应淬火可分为两种主要方法:通过硬化和轮廓硬化。种方法 - 主要用于齿轮高磨损 - 齿周边采用低硬化比功率。但是,如果频率太低,则存在温度感应涡流流动,并且温度在齿中滞后。淬火是通过浸没或喷雾,以实现齿和根圆之间均匀的温度。全硬化后的回火用于工件防裂。

轮廓硬化分为单频和双频过程,也实现了奥氏体化在单一加热中,或通过将齿轮预加热至550-750℃  加热之前硬化温度。预热的目的是充分达到在终加热期间在根圆中的高奥氏体化温度,没有过热的齿。短加热时间和高比功率通常需要实现在不规则距离处的硬化轮廓齿面。

双频过程使用单独或同时的频率。使用单独的频率实现类似于情况的硬化曲线硬化。该过程一个接一个地应用两个不同的频率齿轮。齿以低频率被预热至550-750℃的频率应该使得在根圆区域中发生预热。短延迟,使用较高频率和比功率实现奥氏体化。准确的监测系统是必不可少的,因为加热时间是测量的在这个终加热阶段中的十分之几秒或秒。

汽车轮毂轴分段感应淬火与整体感应淬火的工艺的区别

分段感应淬火和整体感应淬火在汽车轮毂轴上应用的进行对比。

1.分段感应淬火工艺

目前生产厂家大部分都设计采用复杂台阶的轮毂轴管结构,由于轮毂轴管特殊结构,目前感应淬火强化多采用分段多次进行。淬火强化区域包括两段外圆柱面及三个过度圆角,淬火区域比较复杂。分段感应淬火技术有以下缺点:

(1)轮毂轴管有两段不连续的淬火区,分两道工序淬火,所需感应器品种多;

(2)淬火变形超差造成废品率较高,且分段淬火生产节拍慢、成本高、工人劳动强度大;

(3)分段感应淬火形成的中间淬火软带降低了轮毂轴管的强度,由于淬火硬化区和软带硬度相差大,进入磨削工序软带部位粗糙度偏低,影响磨削质量;

(4)分段感应淬火技术中圆角靠圆角的热传导带起来,台阶尖角部位存在明显的过热问题;

(5)分段感应淬火使零件储热少,自回火开裂风险增大。对于以上分段感应淬火技术所带来的缺点,其中淬火变形问题可以采取加大磨削余量的办法解决,但会增加部分磨削加工的成本;其他缺点在使用分段淬火技术时是无法解决办法的,如需这些问题,需进一步优化感应热处理工艺。

联系方式
ico04
联系人

李经理

ico01
电话

13044712812

ico06
手机

13044712812

ico05
QQ

1612517284

ico03
邮箱

13014650631@163.com

ico02
地址

河南省郑州市高新区玉兰街16号